The Exported Protein PbCP1 Localises to Cleft-Like Structures in the Rodent Malaria Parasite Plasmodium berghei
نویسندگان
چکیده
Protein export into the host red blood cell is one of the key processes in the pathobiology of the malaria parasite Plasmodiumtrl falciparum, which extensively remodels the red blood cell to ensure its virulence and survival. In this study, we aimed to shed further light on the protein export mechanisms in the rodent malaria parasite P. berghei and provide further proof of the conserved nature of host cell remodeling in Plasmodium spp. Based on the presence of an export motif (R/KxLxE/Q/D) termed PEXEL (Plasmodium export element), we have generated transgenic P. berghei parasite lines expressing GFP chimera of putatively exported proteins and analysed one of the newly identified exported proteins in detail. This essential protein, termed PbCP1 (P. berghei Cleft-like Protein 1), harbours an atypical PEXEL motif (RxLxY) and is further characterised by two predicted transmembrane domains (2TMD) in the C-terminal end of the protein. We have functionally validated the unusual PEXEL motif in PbCP1 and analysed the role of the 2TMD region, which is required to recruit PbCP1 to discrete membranous structures in the red blood cell cytosol that have a convoluted, vesico-tubular morphology by electron microscopy. Importantly, this study reveals that rodent malaria species also induce modifications to their host red blood cell.
منابع مشابه
A Plasmodium falciparum Host-Targeting Motif Functions in Export during Blood Stage Infection of the Rodent Malarial Parasite Plasmodium berghei
Plasmodium falciparum (P. falciparum) secretes hundreds of proteins--including major virulence proteins--into the host erythrocyte. In order to reach the host cytoplasm, most P. falciparum proteins contain an N terminal host-targeting (HT) motif composed of 11 amino acids. In silico analyses have suggested that the HT motif is conserved throughout the Plasmodium species but experimental evidenc...
متن کاملFunctional Evaluation of Plasmodium Export Signals in Plasmodium berghei Suggests Multiple Modes of Protein Export
The erythrocytic stage development of malaria parasites occurs within the parasitophorous vacuole inside the infected-erythrocytes, and requires transport of several parasite-encoded proteins across the parasitophorous vacuole to several locations, including the cytosol and membrane of the infected cell. These proteins are called exported proteins; and a large number of such proteins have been ...
متن کاملThe exported Plasmodium berghei protein IBIS1 delineates membranous structures in infected red blood cells
The importance of pathogen-induced host cell remodelling has been well established for red blood cell infection by the human malaria parasite Plasmodium falciparum. Exported parasite-encoded proteins, which often possess a signature motif, termed Plasmodium export element (PEXEL) or host-targeting (HT) signal, are critical for the extensive red blood cell modifications. To what extent remodelli...
متن کاملThe ETRAMP Family Member SEP2 Is Expressed throughout Plasmodium berghei Life Cycle and Is Released during Sporozoite Gliding Motility
The early transcribed membrane proteins ETRAMPs belong to a family of small, transmembrane molecules unique to Plasmodium parasite, which share a signal peptide followed by a short lysine-rich stretch, a transmembrane domain and a variable, highly charged C-terminal region. ETRAMPs are usually expressed in a stage-specific manner. In the blood stages they localize to the parasitophorous vacuole...
متن کاملThe Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites.
The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one...
متن کامل